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Numerical calculations of diffusion processes in complex geometries in multi-dimensions is 
of current interest in many applications involving the solution of the coupled equations of 
radiation transport or thermal conduction, as well as in applications involving unstable 
hydrodynamic flows. The application of pseudospectral techniques to the implicit solution of 
the diffusion equation in a distorted two-dimensional grid for both linear and nonlinear 
problems is considered. The implicit pseudospectral equations on an m x n mesh result in a 
full P x P matrix (P = (nm)‘) which can be inverted by the methods we introduce. The exam- 
ples given illustrate the success of pseudospectral techniques applied to the solution of these 
problems. The computational and memory requirements for machine implementation of 
pseudospectral techniques for a given accuracy are shown to be superior to those of standard 
finite difference technique. Coordinate transformations and interface patching techniques of 
interest in mixed Eulerian-Lagrangian modeling are illustrated in several examples. 

1. INTRODUCTION 

Numerical calculations of diffusion processes in problems of compressible 
hydrodynamics as well as simulations involving the solution of the coupled equations 
of hydrodynamics and radiation transport or thermal conduction 1 l-5 ] are central to 
present modeling efforts in inertial confinement fusion 16, 7] and other applications 
that may involve unstable hydrodynamic flows [8, 101. Since pseudospectral 
techniques achieve high spatial resolution with increased economy compared to finite 
difference methods [ 1 l-141 it is natural to consider pseudospectral methods for these 
applications. 

Because characteristic explicit diffusion times for the processes involved in the 
above applications are often several orders of magnitude smaller than the explicit 
time step allowed by the associated supersonic hydrodynamic flow, the diffusion 
equations should be solved implicitly [ 151. The diffkulty in applying pseudospectral 
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techniques to these problems is that the matrix operator associated with the diffusion 
equation is full so the computational cost would be prohibitive if it were necessary to 
invert (or even store) the operator in multi-dimensional calculations. Fortunately, 
there is a procedure which allows us to solve the required spectral equations 
eff%ziently without either inverting or storing the operator [ 161. Here we illustrate the 
technique for the solution of the heat equation on a highly distorted grid in two 
dimensions which is similar to grids encountered in many two-dimensional 
Lagrangian calculations for problems of current interest [ 171. In addition, we analyze 
the accuracy of finite difference methods for these problems. In Cartesian geometry, 
we apply an ICCG technique [ 171 to invert the finite difference approximation to the 
spectral operator and compare the amount of additional work required to invert the 
spectral operator for the diffusion equation. We have also successfully used splitting 
techniques to solve these problems. 

2. HEAT DIFFUSION ON A DISTORTED GRID 

Consider the problem of solving the diffusion equation 

c, $= v (K(x, z, t) VU) (1) 

FIG. 1. Example of a distorted mesh. For the heat flow equation, along x = 0 and x = I there are in- 
sulating boundaries. The temperatures along the left and right boundaries (z = 0 and z = 1, respectively) 
are fixed and have the values TL = 10’ and T, = 10m2. The grid is distorted by a function h(x) between 
the two regions, as indicated. 
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on the mesh illustrated in Fig. 1. The material between the boundaries at z = 0, z = 1 
is uniform and initially cold, so U(x, z, 0) = 0. The top and bottom boundaries along 
x = 0, x = 1 are insulating while the temperature along the left and right boundaries, 
z = 0 and z = 1, are presumed fixed and have the values T, and T, , respectively. The 
distortion in the grid is caused by a stretching function h(x), measured from the left 
boundary to the interface, as illustrated in Fig. 1. In this example, the “interface” bet- 
ween the two regions is artificial in the sense that the materials on either side are 
presumed homogeneous and identical to one another. This problem was first 
suggested by Kershaw [ 181 in his investigation of the accurate finite differencing of 
the diffusion equation on a Lagrangian mesh [ 191. 

In many applications of interest, the interface is a real one between different in- 
homogeneous materials, and the severe distortion illustrated could result from the un- 
stable hydrodynamic flow history of a given calculation. Such unstable flow, for ex- 
ample, can result from the nonlinear growth of a Rayleigh-Taylor instability at the 
ablation surface of a laser-driven pellet [8, 91. 

In such highly distorted situations, there are ambiguities in the finite difference ap- 
proximation to the diffusion operator which have been discussed by Kershaw [ 191. In 
the present application, we have chosen to eliminate some of the diffkulties 
associated with the “corner” terms, i.e., those terms which appear due to the non- 
orthogonal structure of the mesh, by mapping the mesh onto one which is orthogonal. 
Such an approach could find a variety of applications in mixed Eulerian-Lagrangian 
codes, for example [20-231. 

The mapping used here is a simple coordinate stretching which is appropriate when 
h(x) is single valued so regions I and II as illustrated in the figure form a star-shaped 
domain as viewed along z = 0 or z = 1. In more highly distorted flows, such a coor- 
dinate stretching cannot be applied and one would be forced to use more 
sophisticated mappings such as general Lagrangian transformations or conformal 
mappings [24, 251. In the two latter cases, the procedure is only slightly more in- 
volved and does not preclude the application of the pseudospectral techniques that we 
describe below. The use of the coordinate stretching here serves mainly to illustrate 
our pseudospectral techniques for nontrivial examples. In addition, the nature of the 
“corner” terms is transparent in this approach as we demonstrate below. The “cor- 
ner” terms are much more difficult to visualize in the general Lagrangian case [ 191. 

A coordinate stretching appropriate to the geometry of Fig. 1 is 

z=2+, - .l <z< 1; region I, 

&21h(-4 1 -- 

1 -h(x) ’ 
-l<sz<l; region II. 

(2) 

Equations (2) and (3) map both region I and region II onto rectangular regions in the 
(x, Z), and (x, Z) coordinates, and the interface has the simple location Z = 1 (or 
Z = - 1). In the mapped coordinates, we have the relations 
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a a 
ax ,=z z I I 

-(z+l)$&, in region I, (4) 

a 2 a 
---- 

Z-h 3Z’ (5) 

and 

(7) 

where h = h(x) and h’ = dh(x)/dx. 
In addition, we require that the temperature field and the heat flux be continuous 

across the interface. The continuity of the heat flux requires that 

be continuous along z = h(x). In the mapped coordinates, the requirement is that 

must be equal to 

K 
#II= (1 +,$/2)1/Z 

Similarly, the heat flow equation (1) becomes, in the mapped coordinates (x, Z), 

in region I. A similar expression holds in region I1 for (x, 2). The “cornet” terms 
which would appear in the distorted mesh operator appear as the cross-derivative 
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terms involving x and 2 or x and 2 in the mapped space. In formulating a finite dif- 
ference approximation to equations such as (10) we have used a second-order ac- 
curate prescription which results in a nine-point finite difference operator approxima- 
tion to the right-hand side of (10) for all interior points except at the interface. We 
usually apply one-sided derivative operators at the interface 2 = 1, 2 = -1 to ap- 
proximate the flux continuity relation 4, = #,, . 

In two dimensions, the resulting discrete equations take the form 

au. c,--=MiF,D u,, at 

with implied summation of repeated indices. Here A4rkD is a P x P matrix where 
P = (mn)’ and m[n] is the number of points in the x[z] direction and the subscripts, 
i, k, label the spatial gridpoints. The matrix MF,,D is a sparse matrix containing nine 
non-zero diagonals. Introducing &J by 

fl”f” = tin) + &Ji, I (12) 

where the subscript (n) denotes the nth time step, we obtain a discrete approximation 
to (11): 

(13) 

Here ai, is the Kronecker delta, and a = 0 corresponds to an explicit formulation of 
the diffusion equation while a = 1 corresponds to a fully implicit formulation [ 1.51. 
For unconditional stability in implicit calculations we should choose a > 4. 

Many standard techniques exist for the numerical solution to the sparse matrix 
equation (13). In our particular examples, we use the general matrix ICCG algorithm 
of Kershaw [ 17 ] which has been demonstrated to handle successfully nine-diagonal 
problems of the sort we are discussing. We have also used an operator splitting 
technique which seems to work just as well in our examples. 

Before introducing the pseudospectral treatment of the diffusion equation (l), we 
point out the importance of using an accurate finite difference operator approxima- 
tion at the interface. Figure 2a illustrates a moderately distorted mesh which gives the 
steady state solution plotted in Fig. 2b. If K(x, z, t) = K, a constant, the steady state 
solution is 

U(x, z) = r, + (T, - TL)Z, o<z< 1, (14) 

so the isotherms are straight lines parallel to the x-axis. The curved isotherms in 
Fig. 2b are, in fact, principally due to the inaccuracy in treating the interface equation 
(8~(9). The results plotted in Fig. 2b were obtained using first-order one-sided dif- 
ference approximations to this equation. If one uses a higher order approximation 
(which, in this example, leads to a nine-point flux continuity equation), then the much 
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better results plotted in Fig. 2c are obtained. This example illustrates the importance 
of a careful finite difference formulation of the diffusion equation in distorted coor- 
dinates. We illustrate below that the finite difference operator we use to stabilize a 
pseudospectral scheme need not be chosen with such extensive care to obtain an ac- 
curate solution. 

a 
:1 

x 

x=1 

l- 

F: 600 
G: 700 
Ii: 600 
I. 900 I 

A: 100 
6: 200 

- c: 300 
D: 400 

_ E: 600 

I I I 
I Ii C A B A G F E II Ii F E D c G 

I II !! 3 x=0 ll!!L 
j=o 

I I 1 I 
$Pl 

FIG. 2. (a) A moderately distorted mesh used in the problem whose steady state temperature 
contours are discussed in the text as illustrated in (b), which uses the low-order interface differenching 
discussed near the end of Section 2, and (c) the steady state finite difference solution when the more 
accurate nine-point formulation of the flux continuity equation at the interface is used. 
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3. SPECTRAL APPROXIMATION TO HEAT DIFFUSION ON A DISTORTED GRID 

We now consider the pseudospectral formulation of Eq. (1). Because zero gradient 
conditions are imposed along the top and bottom, we expand in a Fourier cosine 
series in x. The fixed temperature boundary conditions at z = f 1 are best handled by 
an expansion in Chebyshev polynomials in the mapped coordinates Z and Z ] 141. 
Thus, we expand U in region I as 

U(Zi, x,, t) = 5 t On,(t) T,(ZJ cos(nmxk), 
m-0 n=O 

where the Zi are the collocation points 

zj = cos ?r(N -j)/N (j = 0, l,..., N) (16) 

and the collocation points X, are 

X, = k/M, k = 0, 1,. .., M. (17) 

Here T, is the Chebyshev polynomial of order n defined by T,(cos 13) = cos(nf3). The 
collocation points Zj and X, are chosen so that the double expansion (15) is efficien- 
tly computable using the fast Fourier transform (FFT) in order O(MNlog NM) 
operations [ 141. Of course, in region II, an expansion such as (15) is assumed in i 
and x. 

In order to calculate the x and Z derivatives in the mapped coordinates as required 
by (4) through (7), we take advantage of simple relations which relate the spectral 
coefficients of the derivative of a function to the spectral coefficients which represent 
the function. For finite Fourier series, if 

f(x) = x 3eikx 

then 

f I = c ikfe”“. 

Similarly, if 

.s 
g(Z)= z: i,Tn(Z) 

II=0 
(18) 

then 

.v 

g’(Z) = 2 &T,,(Z), 
II=0 

(19) 
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where [ 141 

g',= 2s,/c,. (20) 

Here c, = 2, c, = 0 (n < 0), c, = 1 (n > 0), and S, satisfies the recurrence relation 

S” = s,,, + (n + l)S,,l, O<n<N-1, (21) 

with S, = 0 for n > N. 
Substituting expansions (15) into (1) and using the derivative relations give the 

spectral matrix equation 

(22) 

However, in contrast to (13), q,P is a full matrix which, for problems of interest (for 
example, m = n = 100 involves 10’ elements), one cannot store, much less invert 
directly. 

We have discovered [ 16,251 a fast, efficient iterative procedure for solving (22) in 
which the full matrix Msp need never be evaluated or stored! The method allows solu- 
tion of (22) with little more work than is necessary to solve (13) with the same num- 
ber of grid points as spectral modes. Here we briefly outline the method. 

Consider the formal equation 

LU=F, (23) 

where L is a differential operator. Suppose that the spectral approximation to the 
equation is written Lsp Us, = F,, . The key idea is that we can construct an operator 
Lap that approximates Lsp in the sense that 

IILSp’Lapll = O(l) and IIL,'L,,jI= O(1) as P+ co, (24) 

where P is the total number of modes and such that Lap has a sparse matrix represen- 
tation so it requires only O(P) storage and such that L,, is at least as efficiently in- 
vertible as low-order finite difference approximations to (23). 

It is remarkable that we can construct such approximations L,, to the spectral 
operators Lsp that satisfy all the above restrictions as well as 

lIL,‘~,,II 5 2.5, IlL,%,II 5 1 (25) 

for nearly arbitrary operators L and all resolutions P. While the detailed construction 
of L,, is given elsewhere [ 16,261, here we mention that for the current thermal diffu- 
sion problems L,, is simply the lowest-order finite difference operator on the colloca- 
tion grid Zj , X,. 

Once L,, is constructed, various iteration schems [16,26 \ can be used to achieve 
machine accuracy in a bounded number of iterations, independent of the resolution P. 
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For example, conjugate gradient iterations to solve (22) give a factor 10’ improve- 
ment in accuracy after only six iterations, with the convergence improving slightly as 
P increases! 

The simplest way to use this approximate spectral operator calculus is to replace 
(22) by the scheme 

Since (25) holds, this scheme is unconditionally stable. Since MFD is sparse, (26) can 
be solved efficiently and stored compactly. 

In the two-dimensional examples given below, we invert the matrix on the left-hand 
side of (26) using the general nine-diagonal ICCG scheme of Kershaw [ 171, and the 
right-hand side is easily evaluated using the fast Fourier transform. It is of interest 
that the finite difference operator MFkD need not be as carefully formulated as that 
required to obtain the solution of Fig. 2c. Using the finite difference operator used in 
the example of Fig. 2b in (26), the spectral solution obtained is plotted in Fig. 3. The 
only requirement of the finite difference operator MFD is that it should have a 
reasonable approximation to the spectrum of the spectral operator in order to 
stabilize the scheme (26). Thus, one need not take as much care in constructing an 
accurate finite difference operator (see, for example, Ref. [ 191) in order to stabilize 
the spectral scheme. Scheme (26), when stabilized, results in a solution which retains 
the full spectral accuracy except for time stepping errors. Recent advances [27] in the 
development of high-order accurate splitting methods can be used to reduce the time 
stepping errors. 

FIG. 3. Spectral solution for the diffusion equation using the finite difference operator used in 
Fig. 2b. 
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4. ACCURACY 

In order to study the accuracy of spectral methods for diffusion problems with 
interfaces, we consider the simple one-dimensional model problem 

%u i?=u -- at - ax= (-2<x<O), 

au a2v 
z=ax’ (O<x<2) 

(27) 

with the boundary conditions 

U(-2, t) = v(+2, t) = 0 (29) 

and the continuity conditions 

40, 0 = Q4 0, (30) 

(31) 

applied at the “interface” x = 0. Of course, the interface at x = 0 in (27)-(31) 
satisfies the heat equation with diffusion coefficient 1 on -2 Q x < 2. 

To solve (27)-(31) spectrally we employ the Chebyshev expansions 

u(x, t) = 5 a, T,(x - l), 
n=o 

u(x, t) = T b,T,(x + 1). 
m=O 

The resulting spectral equations are of the form 

(34) 

In the notation of Section 3, L,, will be a finite difference approximation to 
(27)-(3 1) on the associated collocation grid of N + M + 1 points (including boun- 
dary and interface points). 

A good way to study the error in the spectral approximation (34) is to find the 
eigenvalues of the matrix L,, for various N and M. The exact eigenfunctions of 
system (27)--(31) are 

24(x, t) = u(x, t) = sin[ 1 h I”= (x + 2)]P, (35) 
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TABLE I 

Accuracy of Pseudospectral Approximation to the Diffusion 
Equation with an Interface 

Spectral cutoff N = M 

S 10 20 

Number of interior collocation points 
9 I9 39 

Absolute error in spectral 
approximation to the 
eigenvalue /I = --(kr~/4)~ 

k=l 
k=2 
k=3 
k= IO 
k = 20 

Absolute error in finite 
difference approximations 
to the eigenvalue 
A= -(kn/4)* 

k=l 
k=2 
k=3 
k=S 

Spectral norms 

L,‘L 
L,,l L:; 

9 x 10-s 
6 x 1O-4 
2 x 10-I 

- 
- 

5 x lo-* 
1 x 10-2 
2 x 10-l 

1.910 2.202 2.340 
0.873 0.967 0.992 

<lo- I0 
3 x lo-* 
5 x 1o-6 
9 x 10-l 

- 

I x 1om2 3 x 10-l 
3 x IO-’ 7x10 4 
4 x lo-* 8x10 ’ 

- 2 x 10-l 

<lo-‘0 
< 10 I0 
<lo-‘o 

2 x lo-” 
2x 10-l 

where the eigenvalues A are 

for k = 1, 2, 3 ,.... 
The errors in the finite difference and pseudospectral approximations to this 

problem are listed in Table I for various k, iV, M. The spectral norms of L;i L,, and 
Ls;‘L,, are also given to show that the method introduced in Section 3 for solving 
the spectral equations works. Observe the extremely rapid convergence of the spectral 
results compared to the finite difference results. 
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5. APPLICATIONS OF SPECTRAL METHODS TO HEAT DIFFUSION PROBLEMS 

In this section we give examples of solutions of (l)-(9) using a variety of mesh 
sizes for two different linear problems: (i) a moderately distored mesh where 
k(x) = 0.25 + 0.25 cos 27rx ( a 3 to 1 stretching); and (ii) a highly distorted mesh 
(8:. to 1 stretching) with sharp corners, like that discussed by Kershaw [ 181. The 
meshes are illustrated in Fig. 2a and Fig. 4. 

In order to evaluate the amount of extra difficulty in converging to a solution of 
the implicit equations of a given required accuracy (lo-’ was used as an error 
criterion in these examples according to the procedure suggested in Ref. [ 17]), 
Table II compares the number of ICCG iterations required for meshes of various 
sizes for both “large” and “small” time steps for the grid of Fig. 2a. In Table II, dtexp 
is the time step necessary for stability of an explicit first-order Euler time integration 
of the spectral equations. The dimensional time z used to measure the step size is 
Ct./K. The time required for the transient, solution to die out is roughly n*K/C,., as 
can be easily seen from the exact time-dependent solution to the problem 

U(x, z, t) = T, + (TR - TJZ + f 22, sin n7rx e -n2dr/r 
> (37) 

n-l 

where 

u^, zz -5 (T 
nn 

R cos ml - TL). 

Table II shows that there is little difference in the amount of work required to achieve 

x=1 

$=o J=l 

FIG. 4. A highly distorted mesh (8; : I coordinate stretching) with sharp corners such as that con- 
sidered in Ref. I18 I. 
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TABLE II 

105 

Number of ICCG iterations 

Grid size 
Time step 

At/r AWexp 

Finite 
difference Spectral 

32x32 0.003 3 x 10’ 14 22 
16 x 16 0.003 2 x lo2 8 11 

8X8 0.003 10 9 10 
32 x 32 0.03 3 x lo4 38 41 
16 x 16 0.03 2 x 102 16 18 

the same relative accuracy for the spectral procedure as that required for the finite 
difference solution with the same number of spatial mesh points as spectral modes. 
Since the spectral results are much more accurate than the finite difference results on 
the same grid, it appears that pseudospectral methods enjoy the same relative advar- 
tage in computing economy in situations involving the implicit solution of the diffu- 
sion equations as they do in explicit solutions of the Navier-Stokes equations [ 111. 
Most of the computing time of the present calculations is spent in the ICCG itera- 
tions and most of the storage also goes to the ICCG scheme. The evaluation of MSPU 
is hidden in these large overhead operations so the computer time is nearly propor- 
tional to the number of ICCG iterations. 

Figure 5 compares the time-dependent behavior of the numerical solution to the 

1000 

0 10 20 30 40 50 60 70 80 90 100 

DSTANCE FROM BOUNDARY I$?) 

FIG. 5. Time-dependent exact solution for the linear heat flow problem compared to the numerically 
obtained time-dependent spectral solution for the distorted mesh illustrated in Fig. 1. The plotted points 
represent the results obtained numerically from the spectral code. 
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problem compared to the exact solution (37) for a severe distortion (a 9 : 1 stretching 
of the form h(x) = 0.5 + 0.4 cos 37rx) illustrated in Fig. 1 for the linear problems for 
the 32 X 32 mesh. The 16 x 16 spectral solutions were essentially the same as the 
8 x 8 spectral solutions for the time-independent steady state. The time-dependent 
solutions converge rapidly as the number of spectral modes increases. 

In addition to the highly distorted cosine mesh discussed above, we have also ob- 
tained solutions to a highly distorted (8-k : 1 distortion) grid with sharp corners, 
similar to that discussed by Kershaw in Ref. [ 181, illustrated in Fig. 4 for a 64 x 64 
mesh. The time steps for this example are intermediate between those given in 
Table II and represent the time for the front of a thermal wave to travel approx- 
imately l/lOth of the entire mesh distance in the z-direction and corresponds to a 
“large” time step in most practical problems of interest, and in fact is of order 
2 x lo5 times the explicit time step required by a first-order Euler time integration 
scheme (see Table III) for the 64 X 64 point example. In the example given, the time 
step would be larger than that required for a sound wave to cross the smallest zone 
(which is the least restrictive time step restriction on most design codes in use in iner- 
tial fusion target design calculations). The results are summarized in Table III. 

The large number of iterations required in both the case of finite differences and 
the spectral scheme is due to the nature of the nine-diagonal ICCG procedure for a 
general matrix. If one takes advantage of the relative economy of the ICCG 
procedure for a symmetric matrix (as in Ref. [ 18]), the number of iterations can be 
significantly reduced (perhaps by a factor of 2 or 3). The major difficulty with the 
general procedure is that the condition number (]&,,,/&,,i,]) of the matrix operator is 
squared in the unsymmetric matrix ICCG procedure discussed in Ref. [17]. 

The interesting conclusion from our runs is that the spectral “overhead” for equal 
numbers of spatial mesh points and spectral modes is relatively minimal. The major 
portion of the work is involved in the LU decomposition of the matrix operator, and 
the absolute accuracy advantage gained for the spectral overhead is justified. The 
finite difference operator used to construct Table III was the more accurate (nine- 
diagonal) operator introduced in Section 2 in the discussion of Fig. 2c. Both the finite 
difference results and the spectral results exhibit “sharp corner” errors in the contours 
whose size is roughly that of the mesh spacing near these contours (see Fig. 6 and 7). 
The spectral results plotted in Fig. 7 have approximately the same accuracy on a 

TABLE III 

Number of ICCG iterations 

Grid size 
Time step 

At/r AtlAtexp 

Finite 
difference Spectral 

64 x 64 0.01 1.7 x lo5 14 100 
32 x 32 0.01 10’ 24 30 
16 x 16 0.01 7x lo2 13 14 
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1 
,J=’ 

FIG. 6. Finite difference solution for a 32 x 32 grid (such as that illustrated for a 64 x 64 grid in 
Fig. 4). 

IIHGFEDCB 

FIG. 7. Spectral solution for a 32 x 32 grid (such as that illustrated for a 64 X 64 grid in Fig, 4) 

32 x 32 point mesh (except at the “corners”) as that obtained in Ref. [ 18 J, which 
used a 75 X 75 point mesh. This result is consistent with the accuracy difference 15.75 0  TD 3c -0.2516  Tw  Tw (with ) Tj
0  Tw (di
 (dif 0  Ti2e -0.ch ) Tj
0  Tr 22.5 0  TD 3  Tr -0.2675  T96n9i6th ) Tj
0 23762  Tc -0.83e(accuracy9.3762  Tc -0.8343  Tw (accuracy ) Tj
0 57rferTracy9.37  TD 3  Tr -0.1mc -09c1 15.75 0 cccuracy9.3762  Tc -0.8343  Tw (accuracy )5215.75 0 c9c1 15.75 0 cccn s2ic0 cccn s2ic0 ccTy )5215.5 15.75 0 cccn s2ic. 
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x=1 

x=0 

j=o 

I 
H G F E 

I - 

- 

j=l 

FIG. 8. Spectral solution for a 64 x 64 grid with sharp comers (see Fig. 4). Note the improved ac- 
curacy (see Fig. 7) due to the added resolution. 

corners) in the interface. For similar problems where the corners have been smoothed, 
one cannot distinguish the difference from the plots in the results between the 32 x 32 
and 64 x 64 spectral results. 

In addition to the examples given for the linear thermal conduction problem, we 
have applied scheme (26) to a nonlinear problem in which K in (1) is given by 
K = K,(T/T,j5’2. The problem is to solve for the propagation of a nonlinear thermal 
wave similar to the one that can propagate in a plasma with electron conduction, a 
problem of considerable interest in inertial confinement studies. The solution is ap- 
proximately self-similar [29] until the wave front reaches the z = 1 boundary. The 
solution to Eq. (1) in the infinite domain 0 < z < co for the nonlinear problem can be 
written in the form [29] T(z) = T&t), where < = z/(K,,/C~.)~)“~ andf(r) is obtained 
by solving the resulting second-order ordinary differential equation with the boundary 
conditions f(0) = 1, f(co) = 0. The position of the front of the nonlinear wave 
(defined by aT/aZ = co) as a function of time is given by 

Ko ‘:2 zf- c’ * ( ) ,‘ (38) 

Figure 9 illustrates the time-dependent evolution of the isotherms which propagate 
along z obtained for a 32 x 32 grid, illustrated in Fig. 10a. In terms of the dimensio- 
nless time t/r (t = c,/K,), the curves in Fig. 9 were obtained by plotting T(t), where i 
is obtained by averaging over the (nearly constant) values of the z coordinate of an 
isotherm for a fixed value of t/r. The values of t/r for the six curves of Fig. 9 were 
t/t = 0.23, 0.38, 0.58, 0.78, 1.03, and 1.48, where the smallest value of t/t is 
represented by the leftmost curve. For values of t/r greater than about 1.5, the solu- 
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FIG. 9. Time-dependent temperature profiles for the nonlinear thermal conduction problem on the 
mesh of Fig. 10a. The z-coordinate for each of the indicated temperature values on the isotherms labeled 
A-I (see Fig. lob) was obtained by averaging the z values across each contour. The profiles illustrated 
were obtained at the dimensionless times t/7 = 0.23, 0.38, 0.58, 0.78, I .03. and 1.48. where the value of 
I/T for each curve increases from left to right in the figure. 

tion can no longer be considered self-similar. The position of the front as a function 
of time for the given values of r/s was found to be 

,;., t0.502~11.1102 
I (39) 

in agreement with the time behavior of Eq. (38). The “exact” isotherms representing 
the spatial behavior of the solution should be straight lines and the numerically ob- 
tained spectral solution at a late time, just before the thermal wave reaches the x = 1 
boundary is illustrated in Fig. lob. This problem is illustrative of a difficult non- 
linear problem in that the thermal conductivity changes by 13 orders of magnitude 
across the grid. The time step used for this problem (Al/t - 5 x lo- ‘) corresponds to 
the approximate time step restrictions which would be required in a problem with the 
heat flow coupled to supersonic hydrodynamic flow, where the front of the thermal 
wave can propagate only a few grid zones per time step. The time step used is ap- 
proximately 5000 times the explicit time step allowed by an explicit formulation 
(a = 0 in (26)). The number of ICCG iterations required for the same relative error 
(lo-‘) for this particular problem was 12. 
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a 

b 

: 1 

FIG. 10. (a) A 32 x 32 distorted mesh for the nonlinear conduction problem. (b) The contours at a 
late time in the calculation before the nonlinear wave front reaches the z = 1 boundary. 

6. CONCLUSIONS 

The above examples demonstrate that pseudospectral techniques can be suc- 
cessfully employed in the solution of implicit diffusion equations of interest in many 
current applications. The computational efficiency and memory requirements of the 
pseudospectral techniques for a given accuracy exceed those of more standard finite 
difference techniques (see Table I). Although we have restricted the discussion in thi! 
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paper, for the two-dimensional problems, to a comparison of finite difference methods 
with spectral methods to the case of incomplete conjugate gradient iterations, we 
remark that essentially identical results are obtained in those cases where other 
iterative schemes are used. In Ref. [ 161, an implicit alternating direction (ADI) 
method was used by one of us in solving the heat equation with Dirichlet boundary 
conditions in a highly distorted domain in cylindrical geometry. The only additional 
overhead incurred computationally in the solution to Eq. (26) when AD1 methods are 
used is the evaluation of the WkplJ’“) term. Compared to the total computational 
work per iteration, the computational work involved in evaluating the term is not 
significant because of the enhancements in speed and efficiency due to the fast 
transforms used in computing the spectral operator. 

The use’ of coordinate transformations and interface patching allows spectral 
methods to be applied in complicated geometries using mixed Eulerian-Lagrangian 
formulations such as those given in Refs. [21-231. We have shown that first-order- 
accurate representation of the finite difference approximate operator both stabilizes 
the spectral scheme (as in Eq. (26)) and gives accurate spectral solutions. 

The methods introduced here remove the barriers to the successful application of 
the high-spatial-accuracy pseudospectral techniques to combined hydrodynamic/dif- 
fusion problems. The methods introduced are as efficient, storage-wise and com- 
putationally, as present finite difference approaches. 

The high resolution capabilities of pseudospectral techniques to resolve phenomena 
near material interfaces should give these schemes a significant advantage over a 
finite difference methods in many applications of interest. 
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